

NASA ROSES BioSCape (van Aardt)

*RadSCape: radiative transfer simulation and validation of the dynamic structural and spectral properties of the vegetation of the Cape

Manisha Das Chaity (PhD student)
Jan van Aardt (advisor; vanaardt@cis.rit.edu)

South African Collaborators:

- Jasper Slingsby
- Glenn Moncrieff

DIRSIG Simulation Team:

- Grady Saunders
- Jacob Irizzary
- Byron Eng

What We Proposed

Improve remote measurement & monitoring via a combination of

Fynbos trait measurements

+ Radiative transfer modeling in a biophysically- and physics-robust simulation environment

Validated using NASA imaging spectroscopy and LiDAR remote sensing data from the BioSCape airborne campaigns

- To improve our understanding of light interactions within the context of fynbos biophysical traits, at different spatial scales, spectral resolutions, and other system parameters
- ➤ A mechanistic linking of structure/spectra-to-traits & assess approaches to track biodiversity as a function of post-fire recovery time

The Simulation Backbone - DIRSIG

College of Science Chester F. **Carlson Center** for Imaging Science

iv) Simulation of a suite of Remote Sensing Simulated Outputs modalities Multispectral Camera Hyperspectral Waveform LiDAR Discrete Return LiDAR

Field Sampling

Grootbos Nature Reserve

- Capture variability in fynbos species composition/structure for virtual scene development
- Capture level and status of post-fire recovery status, based on fire history

Field data (October 2022)

- Five plots per study area, with most plots @ 50 m², 5m x 5m/5m x 10 m releves
- Spectral measurements of leaf reflectance (ASD)
- > Terrestrial laser scanning (TLS) data via a UMass Boston/RIT-developed TLS and iPad scanning

Grootbos Nature Reserve

Field Campaign (October 2022)

College of Science
Chester F.
Carlson Center
for Imaging
Science

Anthospermum aethiopicum

iPad *.ply scan of Cliffortia ilicifolia

DIRSIG Virtual Scene Development

College of Science
Chester F.
Carlson Center
for Imaging
Science

Euclea racemosa

DIRSIG Virtual Scene Render - early stages

Chester F. **Carlson Center** for Imaging Science

Different species structures

Adding fynbos structure to a Lambertian background

...densifying that

different mixtures

structure to

represent

included)

An example of a 2019 burn plot, with initial regrowth shown (four species

Validation – in progress

Validation using

- > drone-based structure-from-motion and multispectral imagery
- > NASA BioSCape airborne campaign data
- > commercial satellite imagery

Grootbos plots
Planet data (3m resolution)

Current

Final Thoughts

- Our broad project goals are to i) assess ideal system parameters for spectral/structural trait remote sensing of the complex fynbos biome and ii) develop algorithms for tracking post-fire recovery and biodiversity
- ➤ This can be approached in a variety of ways, e.g., unmixing algorithms (linear vs. non-linear), machine learning, etc.
- Also using a fusion approach (imaging spectroscopy & LiDAR) for trait assessment as function of post-fire recovery stage
- We plan to do so using a first-principles, physics-based simulation tool, validated using real NASA and other data sources

Next steps & risks

- We need to ensure that virtual scenes are close approximations of the real environment
- We will rely heavily on BioSCape team collaborations for access to trait surveys and spectral data to parameterize the virtual scenes

Contact/questions/comments: Jan van Aardt (vanaardt@cis.rit.edu)